Evaluate
\frac{5\left(74-x\right)\left(x+10\right)}{2}
Expand
-\frac{5x^{2}}{2}+160x+1850
Graph
Share
Copied to clipboard
\left(-\frac{1}{2}x+37\right)\left(5x+50\right)
Subtract 18 from 55 to get 37.
-\frac{1}{2}x\times 5x-\frac{1}{2}x\times 50+185x+1850
Apply the distributive property by multiplying each term of -\frac{1}{2}x+37 by each term of 5x+50.
-\frac{1}{2}x^{2}\times 5-\frac{1}{2}x\times 50+185x+1850
Multiply x and x to get x^{2}.
\frac{-5}{2}x^{2}-\frac{1}{2}x\times 50+185x+1850
Express -\frac{1}{2}\times 5 as a single fraction.
-\frac{5}{2}x^{2}-\frac{1}{2}x\times 50+185x+1850
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
-\frac{5}{2}x^{2}+\frac{-50}{2}x+185x+1850
Express -\frac{1}{2}\times 50 as a single fraction.
-\frac{5}{2}x^{2}-25x+185x+1850
Divide -50 by 2 to get -25.
-\frac{5}{2}x^{2}+160x+1850
Combine -25x and 185x to get 160x.
\left(-\frac{1}{2}x+37\right)\left(5x+50\right)
Subtract 18 from 55 to get 37.
-\frac{1}{2}x\times 5x-\frac{1}{2}x\times 50+185x+1850
Apply the distributive property by multiplying each term of -\frac{1}{2}x+37 by each term of 5x+50.
-\frac{1}{2}x^{2}\times 5-\frac{1}{2}x\times 50+185x+1850
Multiply x and x to get x^{2}.
\frac{-5}{2}x^{2}-\frac{1}{2}x\times 50+185x+1850
Express -\frac{1}{2}\times 5 as a single fraction.
-\frac{5}{2}x^{2}-\frac{1}{2}x\times 50+185x+1850
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
-\frac{5}{2}x^{2}+\frac{-50}{2}x+185x+1850
Express -\frac{1}{2}\times 50 as a single fraction.
-\frac{5}{2}x^{2}-25x+185x+1850
Divide -50 by 2 to get -25.
-\frac{5}{2}x^{2}+160x+1850
Combine -25x and 185x to get 160x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}