Evaluate
-\frac{3a^{2}}{4}-\frac{8b^{2}}{9}
Expand
-\frac{3a^{2}}{4}-\frac{8b^{2}}{9}
Share
Copied to clipboard
\left(-\frac{1}{2}a\right)^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Consider \left(-\frac{1}{2}a+b\right)\left(-\frac{1}{2}a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-\frac{1}{2}\right)^{2}a^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Expand \left(-\frac{1}{2}a\right)^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\left(\frac{1}{3}b\right)^{2}\right)
Consider \left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\left(\frac{1}{3}\right)^{2}b^{2}\right)
Expand \left(\frac{1}{3}b\right)^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\frac{1}{9}b^{2}\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{4}a^{2}-b^{2}-a^{2}-\left(-\frac{1}{9}b^{2}\right)
To find the opposite of a^{2}-\frac{1}{9}b^{2}, find the opposite of each term.
\frac{1}{4}a^{2}-b^{2}-a^{2}+\frac{1}{9}b^{2}
The opposite of -\frac{1}{9}b^{2} is \frac{1}{9}b^{2}.
-\frac{3}{4}a^{2}-b^{2}+\frac{1}{9}b^{2}
Combine \frac{1}{4}a^{2} and -a^{2} to get -\frac{3}{4}a^{2}.
-\frac{3}{4}a^{2}-\frac{8}{9}b^{2}
Combine -b^{2} and \frac{1}{9}b^{2} to get -\frac{8}{9}b^{2}.
\left(-\frac{1}{2}a\right)^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Consider \left(-\frac{1}{2}a+b\right)\left(-\frac{1}{2}a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-\frac{1}{2}\right)^{2}a^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Expand \left(-\frac{1}{2}a\right)^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\left(\frac{1}{3}b\right)^{2}\right)
Consider \left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\left(\frac{1}{3}\right)^{2}b^{2}\right)
Expand \left(\frac{1}{3}b\right)^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\frac{1}{9}b^{2}\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{4}a^{2}-b^{2}-a^{2}-\left(-\frac{1}{9}b^{2}\right)
To find the opposite of a^{2}-\frac{1}{9}b^{2}, find the opposite of each term.
\frac{1}{4}a^{2}-b^{2}-a^{2}+\frac{1}{9}b^{2}
The opposite of -\frac{1}{9}b^{2} is \frac{1}{9}b^{2}.
-\frac{3}{4}a^{2}-b^{2}+\frac{1}{9}b^{2}
Combine \frac{1}{4}a^{2} and -a^{2} to get -\frac{3}{4}a^{2}.
-\frac{3}{4}a^{2}-\frac{8}{9}b^{2}
Combine -b^{2} and \frac{1}{9}b^{2} to get -\frac{8}{9}b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}