Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{1}{2}a\right)^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Consider \left(-\frac{1}{2}a+b\right)\left(-\frac{1}{2}a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-\frac{1}{2}\right)^{2}a^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Expand \left(-\frac{1}{2}a\right)^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\left(\frac{1}{3}b\right)^{2}\right)
Consider \left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\left(\frac{1}{3}\right)^{2}b^{2}\right)
Expand \left(\frac{1}{3}b\right)^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\frac{1}{9}b^{2}\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{4}a^{2}-b^{2}-a^{2}-\left(-\frac{1}{9}b^{2}\right)
To find the opposite of a^{2}-\frac{1}{9}b^{2}, find the opposite of each term.
\frac{1}{4}a^{2}-b^{2}-a^{2}+\frac{1}{9}b^{2}
The opposite of -\frac{1}{9}b^{2} is \frac{1}{9}b^{2}.
-\frac{3}{4}a^{2}-b^{2}+\frac{1}{9}b^{2}
Combine \frac{1}{4}a^{2} and -a^{2} to get -\frac{3}{4}a^{2}.
-\frac{3}{4}a^{2}-\frac{8}{9}b^{2}
Combine -b^{2} and \frac{1}{9}b^{2} to get -\frac{8}{9}b^{2}.
\left(-\frac{1}{2}a\right)^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Consider \left(-\frac{1}{2}a+b\right)\left(-\frac{1}{2}a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-\frac{1}{2}\right)^{2}a^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Expand \left(-\frac{1}{2}a\right)^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right)
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\left(\frac{1}{3}b\right)^{2}\right)
Consider \left(a+\frac{1}{3}b\right)\left(a-\frac{1}{3}b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\left(\frac{1}{3}\right)^{2}b^{2}\right)
Expand \left(\frac{1}{3}b\right)^{2}.
\frac{1}{4}a^{2}-b^{2}-\left(a^{2}-\frac{1}{9}b^{2}\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{4}a^{2}-b^{2}-a^{2}-\left(-\frac{1}{9}b^{2}\right)
To find the opposite of a^{2}-\frac{1}{9}b^{2}, find the opposite of each term.
\frac{1}{4}a^{2}-b^{2}-a^{2}+\frac{1}{9}b^{2}
The opposite of -\frac{1}{9}b^{2} is \frac{1}{9}b^{2}.
-\frac{3}{4}a^{2}-b^{2}+\frac{1}{9}b^{2}
Combine \frac{1}{4}a^{2} and -a^{2} to get -\frac{3}{4}a^{2}.
-\frac{3}{4}a^{2}-\frac{8}{9}b^{2}
Combine -b^{2} and \frac{1}{9}b^{2} to get -\frac{8}{9}b^{2}.