Evaluate
\frac{15}{16}=0.9375
Factor
\frac{3 \cdot 5}{2 ^ {4}} = 0.9375
Share
Copied to clipboard
\left(-\frac{1}{4}+a^{2}\right)\left(a^{2}+\frac{1}{4}\right)+\left(1-a^{2}\right)\left(a^{2}+1\right)
Use the distributive property to multiply -\frac{1}{2}-a by \frac{1}{2}-a and combine like terms.
-\frac{1}{16}+a^{4}+\left(1-a^{2}\right)\left(a^{2}+1\right)
Use the distributive property to multiply -\frac{1}{4}+a^{2} by a^{2}+\frac{1}{4} and combine like terms.
-\frac{1}{16}+a^{4}+1-\left(a^{2}\right)^{2}
Consider \left(1-a^{2}\right)\left(a^{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-\frac{1}{16}+a^{4}+1-a^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{15}{16}+a^{4}-a^{4}
Add -\frac{1}{16} and 1 to get \frac{15}{16}.
\frac{15}{16}
Combine a^{4} and -a^{4} to get 0.
\frac{\left(-1-2a\right)\left(1-2a\right)\left(4a^{2}+1\right)+16\left(1-a^{2}\right)\left(a^{2}+1\right)}{16}
Factor out \frac{1}{16}.
\frac{15}{16}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}