Evaluate
x^{8}-3x^{4}+2x^{2}+2
Expand
x^{8}-3x^{4}+2x^{2}+2
Graph
Share
Copied to clipboard
\left(\left(x^{2}\right)^{2}-1\right)^{2}-\left(x^{2}-2\right)^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Consider \left(x^{2}+1\right)\left(x^{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\left(x^{4}-1\right)^{2}-\left(x^{2}-2\right)^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(x^{4}\right)^{2}-2x^{4}+1-\left(x^{2}-2\right)^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{4}-1\right)^{2}.
x^{8}-2x^{4}+1-\left(x^{2}-2\right)^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
x^{8}-2x^{4}+1-\left(\left(x^{2}\right)^{2}-4x^{2}+4\right)+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-2\right)^{2}.
x^{8}-2x^{4}+1-\left(x^{4}-4x^{2}+4\right)+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{8}-2x^{4}+1-x^{4}+4x^{2}-4+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
To find the opposite of x^{4}-4x^{2}+4, find the opposite of each term.
x^{8}-3x^{4}+1+4x^{2}-4+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Combine -2x^{4} and -x^{4} to get -3x^{4}.
x^{8}-3x^{4}-3+4x^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Subtract 4 from 1 to get -3.
x^{8}-3x^{4}-3+4x^{2}+\left(x^{2}-1\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{8}-3x^{4}-3+4x^{2}+\left(x^{2}\right)^{2}-2x^{2}+1-\left(x^{2}+2\right)\left(x^{2}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
x^{8}-3x^{4}-3+4x^{2}+x^{4}-2x^{2}+1-\left(x^{2}+2\right)\left(x^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{8}-2x^{4}-3+4x^{2}-2x^{2}+1-\left(x^{2}+2\right)\left(x^{2}-2\right)
Combine -3x^{4} and x^{4} to get -2x^{4}.
x^{8}-2x^{4}-3+2x^{2}+1-\left(x^{2}+2\right)\left(x^{2}-2\right)
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
x^{8}-2x^{4}-2+2x^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Add -3 and 1 to get -2.
x^{8}-2x^{4}-2+2x^{2}-\left(\left(x^{2}\right)^{2}-4\right)
Consider \left(x^{2}+2\right)\left(x^{2}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{8}-2x^{4}-2+2x^{2}-\left(x^{4}-4\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{8}-2x^{4}-2+2x^{2}-x^{4}+4
To find the opposite of x^{4}-4, find the opposite of each term.
x^{8}-3x^{4}-2+2x^{2}+4
Combine -2x^{4} and -x^{4} to get -3x^{4}.
x^{8}-3x^{4}+2+2x^{2}
Add -2 and 4 to get 2.
\left(\left(x^{2}\right)^{2}-1\right)^{2}-\left(x^{2}-2\right)^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Consider \left(x^{2}+1\right)\left(x^{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\left(x^{4}-1\right)^{2}-\left(x^{2}-2\right)^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(x^{4}\right)^{2}-2x^{4}+1-\left(x^{2}-2\right)^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{4}-1\right)^{2}.
x^{8}-2x^{4}+1-\left(x^{2}-2\right)^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
x^{8}-2x^{4}+1-\left(\left(x^{2}\right)^{2}-4x^{2}+4\right)+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-2\right)^{2}.
x^{8}-2x^{4}+1-\left(x^{4}-4x^{2}+4\right)+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{8}-2x^{4}+1-x^{4}+4x^{2}-4+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
To find the opposite of x^{4}-4x^{2}+4, find the opposite of each term.
x^{8}-3x^{4}+1+4x^{2}-4+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Combine -2x^{4} and -x^{4} to get -3x^{4}.
x^{8}-3x^{4}-3+4x^{2}+\left(\left(x+1\right)\left(x-1\right)\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Subtract 4 from 1 to get -3.
x^{8}-3x^{4}-3+4x^{2}+\left(x^{2}-1\right)^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{8}-3x^{4}-3+4x^{2}+\left(x^{2}\right)^{2}-2x^{2}+1-\left(x^{2}+2\right)\left(x^{2}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
x^{8}-3x^{4}-3+4x^{2}+x^{4}-2x^{2}+1-\left(x^{2}+2\right)\left(x^{2}-2\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{8}-2x^{4}-3+4x^{2}-2x^{2}+1-\left(x^{2}+2\right)\left(x^{2}-2\right)
Combine -3x^{4} and x^{4} to get -2x^{4}.
x^{8}-2x^{4}-3+2x^{2}+1-\left(x^{2}+2\right)\left(x^{2}-2\right)
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
x^{8}-2x^{4}-2+2x^{2}-\left(x^{2}+2\right)\left(x^{2}-2\right)
Add -3 and 1 to get -2.
x^{8}-2x^{4}-2+2x^{2}-\left(\left(x^{2}\right)^{2}-4\right)
Consider \left(x^{2}+2\right)\left(x^{2}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{8}-2x^{4}-2+2x^{2}-\left(x^{4}-4\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{8}-2x^{4}-2+2x^{2}-x^{4}+4
To find the opposite of x^{4}-4, find the opposite of each term.
x^{8}-3x^{4}-2+2x^{2}+4
Combine -2x^{4} and -x^{4} to get -3x^{4}.
x^{8}-3x^{4}+2+2x^{2}
Add -2 and 4 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}