Evaluate
6\left(a-4\right)\left(a+2\right)
Expand
6a^{2}-12a-48
Share
Copied to clipboard
a^{3}-5a^{2}-2a+24-\left(a-9\right)\left(a^{2}-2a-8\right)
Use the distributive property to multiply a^{2}-a-6 by a-4 and combine like terms.
a^{3}-5a^{2}-2a+24-\left(a^{3}-11a^{2}+10a+72\right)
Use the distributive property to multiply a-9 by a^{2}-2a-8 and combine like terms.
a^{3}-5a^{2}-2a+24-a^{3}+11a^{2}-10a-72
To find the opposite of a^{3}-11a^{2}+10a+72, find the opposite of each term.
-5a^{2}-2a+24+11a^{2}-10a-72
Combine a^{3} and -a^{3} to get 0.
6a^{2}-2a+24-10a-72
Combine -5a^{2} and 11a^{2} to get 6a^{2}.
6a^{2}-12a+24-72
Combine -2a and -10a to get -12a.
6a^{2}-12a-48
Subtract 72 from 24 to get -48.
a^{3}-5a^{2}-2a+24-\left(a-9\right)\left(a^{2}-2a-8\right)
Use the distributive property to multiply a^{2}-a-6 by a-4 and combine like terms.
a^{3}-5a^{2}-2a+24-\left(a^{3}-11a^{2}+10a+72\right)
Use the distributive property to multiply a-9 by a^{2}-2a-8 and combine like terms.
a^{3}-5a^{2}-2a+24-a^{3}+11a^{2}-10a-72
To find the opposite of a^{3}-11a^{2}+10a+72, find the opposite of each term.
-5a^{2}-2a+24+11a^{2}-10a-72
Combine a^{3} and -a^{3} to get 0.
6a^{2}-2a+24-10a-72
Combine -5a^{2} and 11a^{2} to get 6a^{2}.
6a^{2}-12a+24-72
Combine -2a and -10a to get -12a.
6a^{2}-12a-48
Subtract 72 from 24 to get -48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}