( ( 20 - a ) ( 380 + 5 a ) = 32000
Solve for a
a=-28+64i
a=-28-64i
Share
Copied to clipboard
7600-280a-5a^{2}=32000
Use the distributive property to multiply 20-a by 380+5a and combine like terms.
7600-280a-5a^{2}-32000=0
Subtract 32000 from both sides.
-24400-280a-5a^{2}=0
Subtract 32000 from 7600 to get -24400.
-5a^{2}-280a-24400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-280\right)±\sqrt{\left(-280\right)^{2}-4\left(-5\right)\left(-24400\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -280 for b, and -24400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-280\right)±\sqrt{78400-4\left(-5\right)\left(-24400\right)}}{2\left(-5\right)}
Square -280.
a=\frac{-\left(-280\right)±\sqrt{78400+20\left(-24400\right)}}{2\left(-5\right)}
Multiply -4 times -5.
a=\frac{-\left(-280\right)±\sqrt{78400-488000}}{2\left(-5\right)}
Multiply 20 times -24400.
a=\frac{-\left(-280\right)±\sqrt{-409600}}{2\left(-5\right)}
Add 78400 to -488000.
a=\frac{-\left(-280\right)±640i}{2\left(-5\right)}
Take the square root of -409600.
a=\frac{280±640i}{2\left(-5\right)}
The opposite of -280 is 280.
a=\frac{280±640i}{-10}
Multiply 2 times -5.
a=\frac{280+640i}{-10}
Now solve the equation a=\frac{280±640i}{-10} when ± is plus. Add 280 to 640i.
a=-28-64i
Divide 280+640i by -10.
a=\frac{280-640i}{-10}
Now solve the equation a=\frac{280±640i}{-10} when ± is minus. Subtract 640i from 280.
a=-28+64i
Divide 280-640i by -10.
a=-28-64i a=-28+64i
The equation is now solved.
7600-280a-5a^{2}=32000
Use the distributive property to multiply 20-a by 380+5a and combine like terms.
-280a-5a^{2}=32000-7600
Subtract 7600 from both sides.
-280a-5a^{2}=24400
Subtract 7600 from 32000 to get 24400.
-5a^{2}-280a=24400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5a^{2}-280a}{-5}=\frac{24400}{-5}
Divide both sides by -5.
a^{2}+\left(-\frac{280}{-5}\right)a=\frac{24400}{-5}
Dividing by -5 undoes the multiplication by -5.
a^{2}+56a=\frac{24400}{-5}
Divide -280 by -5.
a^{2}+56a=-4880
Divide 24400 by -5.
a^{2}+56a+28^{2}=-4880+28^{2}
Divide 56, the coefficient of the x term, by 2 to get 28. Then add the square of 28 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+56a+784=-4880+784
Square 28.
a^{2}+56a+784=-4096
Add -4880 to 784.
\left(a+28\right)^{2}=-4096
Factor a^{2}+56a+784. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+28\right)^{2}}=\sqrt{-4096}
Take the square root of both sides of the equation.
a+28=64i a+28=-64i
Simplify.
a=-28+64i a=-28-64i
Subtract 28 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}