Evaluate
\frac{2\left(2x^{2}\ln(2x^{2}+1)+4x^{2}\ln(x)+\ln(2x^{2}+1)+4\ln(2)x^{2}\right)\left(2x^{2}+1\right)^{2\left(\ln(x)+\ln(2)\right)}}{x\left(2x^{2}+1\right)}
Differentiate w.r.t. x
\frac{2\left(2x^{2}+1\right)^{2\left(\ln(x)+\ln(2)\right)}\left(8x^{4}\ln(2x^{2}+1)^{2}+8\left(x\ln(2x^{2}+1)\right)^{2}+32x^{4}\ln(x)\ln(2x^{2}+1)+32\ln(2)x^{4}\ln(2x^{2}+1)-4x^{4}\ln(2x^{2}+1)+32x^{4}\ln(x)^{2}+16x^{2}\ln(x)\ln(2x^{2}+1)+64\ln(2)x^{4}\ln(x)-8x^{4}\ln(x)+16\ln(2)x^{2}\ln(2x^{2}+1)-4x^{2}\ln(2x^{2}+1)+2\ln(2x^{2}+1)^{2}+4x^{2}\ln(x)-\ln(2x^{2}+1)+32\ln(2)^{2}x^{4}-8\ln(2)x^{4}+16x^{4}+4\ln(2)x^{2}+8x^{2}\right)}{\left(x\left(2x^{2}+1\right)\right)^{2}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}