Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(4-a^{2}-2\right)^{3}
Consider \left(2-a\right)\left(2+a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\left(2-a^{2}\right)^{3}
Subtract 2 from 4 to get 2.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(2-a^{2}\right)^{3}.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8-12a^{2}+6a^{4}-a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\left(4-a^{2}-2\right)^{3}
Consider \left(2-a\right)\left(2+a\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\left(2-a^{2}\right)^{3}
Subtract 2 from 4 to get 2.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(2-a^{2}\right)^{3}.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8-12a^{2}+6a^{4}-a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.