( ( - \frac { 2 } { 5 } + \frac { 3 } { 2 } ) : ( + \frac { 1 } { 2 } + \frac { 3 } { 5 } ) \cdot ( + \frac { 1 } { 4 } + \frac { 1 } { 1 } + \frac { 7 } { 20 } ) ] : [ ( - \frac { 2 } { 5 } + \frac { 3 } { 4 } ) \cdot ( + \frac { 1 } { 2 } + \frac { 11 } { 10 } ) ] =
Evaluate
\frac{20}{7}\approx 2.857142857
Factor
\frac{2 ^ {2} \cdot 5}{7} = 2\frac{6}{7} = 2.857142857142857
Share
Copied to clipboard
\frac{\frac{-\frac{2}{5}+\frac{3}{2}}{\frac{1}{2}+\frac{3}{5}}\left(\frac{1}{4}+1+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Divide 1 by 1 to get 1.
\frac{\frac{-\frac{4}{10}+\frac{15}{10}}{\frac{1}{2}+\frac{3}{5}}\left(\frac{1}{4}+1+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Least common multiple of 5 and 2 is 10. Convert -\frac{2}{5} and \frac{3}{2} to fractions with denominator 10.
\frac{\frac{\frac{-4+15}{10}}{\frac{1}{2}+\frac{3}{5}}\left(\frac{1}{4}+1+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Since -\frac{4}{10} and \frac{15}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{11}{10}}{\frac{1}{2}+\frac{3}{5}}\left(\frac{1}{4}+1+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Add -4 and 15 to get 11.
\frac{\frac{\frac{11}{10}}{\frac{5}{10}+\frac{6}{10}}\left(\frac{1}{4}+1+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{3}{5} to fractions with denominator 10.
\frac{\frac{\frac{11}{10}}{\frac{5+6}{10}}\left(\frac{1}{4}+1+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Since \frac{5}{10} and \frac{6}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{11}{10}}{\frac{11}{10}}\left(\frac{1}{4}+1+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Add 5 and 6 to get 11.
\frac{1\left(\frac{1}{4}+1+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Divide \frac{11}{10} by \frac{11}{10} to get 1.
\frac{1\left(\frac{1}{4}+\frac{4}{4}+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Convert 1 to fraction \frac{4}{4}.
\frac{1\left(\frac{1+4}{4}+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Since \frac{1}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{1\left(\frac{5}{4}+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Add 1 and 4 to get 5.
\frac{1\left(\frac{25}{20}+\frac{7}{20}\right)}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Least common multiple of 4 and 20 is 20. Convert \frac{5}{4} and \frac{7}{20} to fractions with denominator 20.
\frac{1\times \frac{25+7}{20}}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Since \frac{25}{20} and \frac{7}{20} have the same denominator, add them by adding their numerators.
\frac{1\times \frac{32}{20}}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Add 25 and 7 to get 32.
\frac{1\times \frac{8}{5}}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Reduce the fraction \frac{32}{20} to lowest terms by extracting and canceling out 4.
\frac{\frac{8}{5}}{\left(-\frac{2}{5}+\frac{3}{4}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Multiply 1 and \frac{8}{5} to get \frac{8}{5}.
\frac{\frac{8}{5}}{\left(-\frac{8}{20}+\frac{15}{20}\right)\left(\frac{1}{2}+\frac{11}{10}\right)}
Least common multiple of 5 and 4 is 20. Convert -\frac{2}{5} and \frac{3}{4} to fractions with denominator 20.
\frac{\frac{8}{5}}{\frac{-8+15}{20}\left(\frac{1}{2}+\frac{11}{10}\right)}
Since -\frac{8}{20} and \frac{15}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{8}{5}}{\frac{7}{20}\left(\frac{1}{2}+\frac{11}{10}\right)}
Add -8 and 15 to get 7.
\frac{\frac{8}{5}}{\frac{7}{20}\left(\frac{5}{10}+\frac{11}{10}\right)}
Least common multiple of 2 and 10 is 10. Convert \frac{1}{2} and \frac{11}{10} to fractions with denominator 10.
\frac{\frac{8}{5}}{\frac{7}{20}\times \frac{5+11}{10}}
Since \frac{5}{10} and \frac{11}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{8}{5}}{\frac{7}{20}\times \frac{16}{10}}
Add 5 and 11 to get 16.
\frac{\frac{8}{5}}{\frac{7}{20}\times \frac{8}{5}}
Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{8}{5}}{\frac{7\times 8}{20\times 5}}
Multiply \frac{7}{20} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{8}{5}}{\frac{56}{100}}
Do the multiplications in the fraction \frac{7\times 8}{20\times 5}.
\frac{\frac{8}{5}}{\frac{14}{25}}
Reduce the fraction \frac{56}{100} to lowest terms by extracting and canceling out 4.
\frac{8}{5}\times \frac{25}{14}
Divide \frac{8}{5} by \frac{14}{25} by multiplying \frac{8}{5} by the reciprocal of \frac{14}{25}.
\frac{8\times 25}{5\times 14}
Multiply \frac{8}{5} times \frac{25}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{200}{70}
Do the multiplications in the fraction \frac{8\times 25}{5\times 14}.
\frac{20}{7}
Reduce the fraction \frac{200}{70} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}