( | - \frac { 24 } { 37 } | : | - \frac { 3 } { 74 } | - \frac { 2 ^ { 2 } \cdot 3 ^ { 2 } } { 10 } ) : | - 1 \frac { 1 } { 30 } | - | - 11,9 |
Evaluate
0,1
Factor
\frac{1}{2 \cdot 5} = 0.1
Share
Copied to clipboard
\frac{\frac{\frac{24}{37}}{|-\frac{3}{74}|}-\frac{2^{2}\times 3^{2}}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{24}{37} is \frac{24}{37}.
\frac{\frac{\frac{24}{37}}{\frac{3}{74}}-\frac{2^{2}\times 3^{2}}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{3}{74} is \frac{3}{74}.
\frac{\frac{24}{37}\times \frac{74}{3}-\frac{2^{2}\times 3^{2}}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Divide \frac{24}{37} by \frac{3}{74} by multiplying \frac{24}{37} by the reciprocal of \frac{3}{74}.
\frac{\frac{24\times 74}{37\times 3}-\frac{2^{2}\times 3^{2}}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Multiply \frac{24}{37} times \frac{74}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1776}{111}-\frac{2^{2}\times 3^{2}}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Do the multiplications in the fraction \frac{24\times 74}{37\times 3}.
\frac{16-\frac{2^{2}\times 3^{2}}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Divide 1776 by 111 to get 16.
\frac{16-\frac{4\times 3^{2}}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Calculate 2 to the power of 2 and get 4.
\frac{16-\frac{4\times 9}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Calculate 3 to the power of 2 and get 9.
\frac{16-\frac{36}{10}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Multiply 4 and 9 to get 36.
\frac{16-\frac{18}{5}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Reduce the fraction \frac{36}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{80}{5}-\frac{18}{5}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Convert 16 to fraction \frac{80}{5}.
\frac{\frac{80-18}{5}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Since \frac{80}{5} and \frac{18}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{62}{5}}{|-\frac{1\times 30+1}{30}|}-|-11,9|
Subtract 18 from 80 to get 62.
\frac{\frac{62}{5}}{|-\frac{30+1}{30}|}-|-11,9|
Multiply 1 and 30 to get 30.
\frac{\frac{62}{5}}{|-\frac{31}{30}|}-|-11,9|
Add 30 and 1 to get 31.
\frac{\frac{62}{5}}{\frac{31}{30}}-|-11,9|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{31}{30} is \frac{31}{30}.
\frac{62}{5}\times \frac{30}{31}-|-11,9|
Divide \frac{62}{5} by \frac{31}{30} by multiplying \frac{62}{5} by the reciprocal of \frac{31}{30}.
\frac{62\times 30}{5\times 31}-|-11,9|
Multiply \frac{62}{5} times \frac{30}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{1860}{155}-|-11,9|
Do the multiplications in the fraction \frac{62\times 30}{5\times 31}.
12-|-11,9|
Divide 1860 by 155 to get 12.
12-11,9
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -11,9 is 11,9.
0,1
Subtract 11,9 from 12 to get 0,1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}