Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
|\frac{3+2}{2}-\frac{7}{3}|+|\frac{2}{3}-3|
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
|\frac{5}{2}-\frac{7}{3}|+|\frac{2}{3}-3|
Add 3 and 2 to get 5.
|\frac{15}{6}-\frac{14}{6}|+|\frac{2}{3}-3|
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{7}{3} to fractions with denominator 6.
|\frac{15-14}{6}|+|\frac{2}{3}-3|
Since \frac{15}{6} and \frac{14}{6} have the same denominator, subtract them by subtracting their numerators.
|\frac{1}{6}|+|\frac{2}{3}-3|
Subtract 14 from 15 to get 1.
\frac{1}{6}+|\frac{2}{3}-3|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{1}{6} is \frac{1}{6}.
\frac{1}{6}+|\frac{2}{3}-\frac{9}{3}|
Convert 3 to fraction \frac{9}{3}.
\frac{1}{6}+|\frac{2-9}{3}|
Since \frac{2}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}+|-\frac{7}{3}|
Subtract 9 from 2 to get -7.
\frac{1}{6}+\frac{7}{3}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{7}{3} is \frac{7}{3}.
\frac{1}{6}+\frac{14}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{7}{3} to fractions with denominator 6.
\frac{1+14}{6}
Since \frac{1}{6} and \frac{14}{6} have the same denominator, add them by adding their numerators.
\frac{15}{6}
Add 1 and 14 to get 15.
\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}