Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(x^{2}+16x-9)
Subtract 25 from 16 to get -9.
x^{2}+16x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\left(-9\right)}}{2}
Square 16.
x=\frac{-16±\sqrt{256+36}}{2}
Multiply -4 times -9.
x=\frac{-16±\sqrt{292}}{2}
Add 256 to 36.
x=\frac{-16±2\sqrt{73}}{2}
Take the square root of 292.
x=\frac{2\sqrt{73}-16}{2}
Now solve the equation x=\frac{-16±2\sqrt{73}}{2} when ± is plus. Add -16 to 2\sqrt{73}.
x=\sqrt{73}-8
Divide -16+2\sqrt{73} by 2.
x=\frac{-2\sqrt{73}-16}{2}
Now solve the equation x=\frac{-16±2\sqrt{73}}{2} when ± is minus. Subtract 2\sqrt{73} from -16.
x=-\sqrt{73}-8
Divide -16-2\sqrt{73} by 2.
x^{2}+16x-9=\left(x-\left(\sqrt{73}-8\right)\right)\left(x-\left(-\sqrt{73}-8\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -8+\sqrt{73} for x_{1} and -8-\sqrt{73} for x_{2}.
x^{2}+16x-9
Subtract 25 from 16 to get -9.