Solve for x
x=20\sqrt{19}-5\approx 82.177978871
x=-20\sqrt{19}-5\approx -92.177978871
Graph
Share
Copied to clipboard
x^{2}+10x-7575=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-7575\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and -7575 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-7575\right)}}{2}
Square 10.
x=\frac{-10±\sqrt{100+30300}}{2}
Multiply -4 times -7575.
x=\frac{-10±\sqrt{30400}}{2}
Add 100 to 30300.
x=\frac{-10±40\sqrt{19}}{2}
Take the square root of 30400.
x=\frac{40\sqrt{19}-10}{2}
Now solve the equation x=\frac{-10±40\sqrt{19}}{2} when ± is plus. Add -10 to 40\sqrt{19}.
x=20\sqrt{19}-5
Divide -10+40\sqrt{19} by 2.
x=\frac{-40\sqrt{19}-10}{2}
Now solve the equation x=\frac{-10±40\sqrt{19}}{2} when ± is minus. Subtract 40\sqrt{19} from -10.
x=-20\sqrt{19}-5
Divide -10-40\sqrt{19} by 2.
x=20\sqrt{19}-5 x=-20\sqrt{19}-5
The equation is now solved.
x^{2}+10x-7575=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+10x-7575-\left(-7575\right)=-\left(-7575\right)
Add 7575 to both sides of the equation.
x^{2}+10x=-\left(-7575\right)
Subtracting -7575 from itself leaves 0.
x^{2}+10x=7575
Subtract -7575 from 0.
x^{2}+10x+5^{2}=7575+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=7575+25
Square 5.
x^{2}+10x+25=7600
Add 7575 to 25.
\left(x+5\right)^{2}=7600
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{7600}
Take the square root of both sides of the equation.
x+5=20\sqrt{19} x+5=-20\sqrt{19}
Simplify.
x=20\sqrt{19}-5 x=-20\sqrt{19}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}