Solve for x
x=\frac{133\sqrt{337}}{3370}\approx 0.724497165
x=-\frac{133\sqrt{337}}{3370}\approx -0.724497165
Graph
Quiz
Polynomial
5 problems similar to:
( { 16 }^{ 2 } + { 9 }^{ 2 } ) \times { x }^{ 2 } = { 13.3 }^{ 2 }
Share
Copied to clipboard
\left(256+9^{2}\right)x^{2}=13.3^{2}
Calculate 16 to the power of 2 and get 256.
\left(256+81\right)x^{2}=13.3^{2}
Calculate 9 to the power of 2 and get 81.
337x^{2}=13.3^{2}
Add 256 and 81 to get 337.
337x^{2}=176.89
Calculate 13.3 to the power of 2 and get 176.89.
x^{2}=\frac{176.89}{337}
Divide both sides by 337.
x^{2}=\frac{17689}{33700}
Expand \frac{176.89}{337} by multiplying both numerator and the denominator by 100.
x=\frac{133\sqrt{337}}{3370} x=-\frac{133\sqrt{337}}{3370}
Take the square root of both sides of the equation.
\left(256+9^{2}\right)x^{2}=13.3^{2}
Calculate 16 to the power of 2 and get 256.
\left(256+81\right)x^{2}=13.3^{2}
Calculate 9 to the power of 2 and get 81.
337x^{2}=13.3^{2}
Add 256 and 81 to get 337.
337x^{2}=176.89
Calculate 13.3 to the power of 2 and get 176.89.
337x^{2}-176.89=0
Subtract 176.89 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 337\left(-176.89\right)}}{2\times 337}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 337 for a, 0 for b, and -176.89 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 337\left(-176.89\right)}}{2\times 337}
Square 0.
x=\frac{0±\sqrt{-1348\left(-176.89\right)}}{2\times 337}
Multiply -4 times 337.
x=\frac{0±\sqrt{238447.72}}{2\times 337}
Multiply -1348 times -176.89.
x=\frac{0±\frac{133\sqrt{337}}{5}}{2\times 337}
Take the square root of 238447.72.
x=\frac{0±\frac{133\sqrt{337}}{5}}{674}
Multiply 2 times 337.
x=\frac{133\sqrt{337}}{3370}
Now solve the equation x=\frac{0±\frac{133\sqrt{337}}{5}}{674} when ± is plus.
x=-\frac{133\sqrt{337}}{3370}
Now solve the equation x=\frac{0±\frac{133\sqrt{337}}{5}}{674} when ± is minus.
x=\frac{133\sqrt{337}}{3370} x=-\frac{133\sqrt{337}}{3370}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}