( \text { cosee } Q - \cot \theta ) ^ { 2 } = \frac { 1 - \cos \theta } { 1 + \cos \theta }
Solve for Q (complex solution)
Q=\frac{\left(\cos(\theta )+1\right)^{-\frac{1}{2}}\left(\sqrt{\cos(\theta )+1}\cos(\theta )-i\sqrt{\cos(\theta )-1}\sin(\theta )\right)}{\cos(e^{2})\sin(\theta )}
Q=\frac{\left(\cos(\theta )+1\right)^{-\frac{1}{2}}\left(\sqrt{\cos(\theta )+1}\cos(\theta )+i\sqrt{\cos(\theta )-1}\sin(\theta )\right)}{\cos(e^{2})\sin(\theta )}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}