Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{6}-2\sqrt{3}\right)^{2}
Multiply \sqrt{6}-2\sqrt{3} and \sqrt{6}-2\sqrt{3} to get \left(\sqrt{6}-2\sqrt{3}\right)^{2}.
\left(\sqrt{6}\right)^{2}-4\sqrt{6}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-2\sqrt{3}\right)^{2}.
6-4\sqrt{6}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
The square of \sqrt{6} is 6.
6-4\sqrt{3}\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
6-4\times 3\sqrt{2}+4\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
6-12\sqrt{2}+4\left(\sqrt{3}\right)^{2}
Multiply -4 and 3 to get -12.
6-12\sqrt{2}+4\times 3
The square of \sqrt{3} is 3.
6-12\sqrt{2}+12
Multiply 4 and 3 to get 12.
18-12\sqrt{2}
Add 6 and 12 to get 18.