Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{5}\sqrt{21}-\sqrt{5}\sqrt{15}-\sqrt{7}\sqrt{21}+\sqrt{15}\sqrt{7}
Apply the distributive property by multiplying each term of \sqrt{5}-\sqrt{7} by each term of \sqrt{21}-\sqrt{15}.
\sqrt{105}-\sqrt{5}\sqrt{15}-\sqrt{7}\sqrt{21}+\sqrt{15}\sqrt{7}
To multiply \sqrt{5} and \sqrt{21}, multiply the numbers under the square root.
\sqrt{105}-\sqrt{5}\sqrt{5}\sqrt{3}-\sqrt{7}\sqrt{21}+\sqrt{15}\sqrt{7}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\sqrt{105}-5\sqrt{3}-\sqrt{7}\sqrt{21}+\sqrt{15}\sqrt{7}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\sqrt{105}-5\sqrt{3}-\sqrt{7}\sqrt{7}\sqrt{3}+\sqrt{15}\sqrt{7}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
\sqrt{105}-5\sqrt{3}-7\sqrt{3}+\sqrt{15}\sqrt{7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\sqrt{105}-12\sqrt{3}+\sqrt{15}\sqrt{7}
Combine -5\sqrt{3} and -7\sqrt{3} to get -12\sqrt{3}.
\sqrt{105}-12\sqrt{3}+\sqrt{105}
To multiply \sqrt{15} and \sqrt{7}, multiply the numbers under the square root.
2\sqrt{105}-12\sqrt{3}
Combine \sqrt{105} and \sqrt{105} to get 2\sqrt{105}.