Evaluate
\frac{\sqrt{2}}{12}+\frac{4}{3}\approx 1.451184464
Factor
\frac{\sqrt{2} + 16}{12} = 1.4511844635310913
Share
Copied to clipboard
\frac{4\sqrt{3}+\frac{1}{2}\sqrt{\frac{3}{2}}}{\sqrt{27}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{4\sqrt{3}+\frac{1}{2}\times \frac{\sqrt{3}}{\sqrt{2}}}{\sqrt{27}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{4\sqrt{3}+\frac{1}{2}\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{\sqrt{27}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{3}+\frac{1}{2}\times \frac{\sqrt{3}\sqrt{2}}{2}}{\sqrt{27}}
The square of \sqrt{2} is 2.
\frac{4\sqrt{3}+\frac{1}{2}\times \frac{\sqrt{6}}{2}}{\sqrt{27}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{4\sqrt{3}+\frac{\sqrt{6}}{2\times 2}}{\sqrt{27}}
Multiply \frac{1}{2} times \frac{\sqrt{6}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4\sqrt{3}\times 2\times 2}{2\times 2}+\frac{\sqrt{6}}{2\times 2}}{\sqrt{27}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{3} times \frac{2\times 2}{2\times 2}.
\frac{\frac{4\sqrt{3}\times 2\times 2+\sqrt{6}}{2\times 2}}{\sqrt{27}}
Since \frac{4\sqrt{3}\times 2\times 2}{2\times 2} and \frac{\sqrt{6}}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{\frac{16\sqrt{3}+\sqrt{6}}{2\times 2}}{\sqrt{27}}
Do the multiplications in 4\sqrt{3}\times 2\times 2+\sqrt{6}.
\frac{\frac{16\sqrt{3}+\sqrt{6}}{2\times 2}}{3\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{16\sqrt{3}+\sqrt{6}}{2\times 2\times 3\sqrt{3}}
Express \frac{\frac{16\sqrt{3}+\sqrt{6}}{2\times 2}}{3\sqrt{3}} as a single fraction.
\frac{\left(16\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{2\times 2\times 3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{16\sqrt{3}+\sqrt{6}}{2\times 2\times 3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(16\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{2\times 2\times 3\times 3}
The square of \sqrt{3} is 3.
\frac{\left(16\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{4\times 3\times 3}
Multiply 2 and 2 to get 4.
\frac{\left(16\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{12\times 3}
Multiply 4 and 3 to get 12.
\frac{\left(16\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{36}
Multiply 12 and 3 to get 36.
\frac{16\left(\sqrt{3}\right)^{2}+\sqrt{6}\sqrt{3}}{36}
Use the distributive property to multiply 16\sqrt{3}+\sqrt{6} by \sqrt{3}.
\frac{16\times 3+\sqrt{6}\sqrt{3}}{36}
The square of \sqrt{3} is 3.
\frac{48+\sqrt{6}\sqrt{3}}{36}
Multiply 16 and 3 to get 48.
\frac{48+\sqrt{3}\sqrt{2}\sqrt{3}}{36}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{48+3\sqrt{2}}{36}
Multiply \sqrt{3} and \sqrt{3} to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}