Solve for x
x=\sqrt{2}y+y+\sqrt{2}+2
Solve for y
y=\left(\sqrt{2}-1\right)x-\sqrt{2}
Graph
Share
Copied to clipboard
\sqrt{2}x-x-y=\sqrt{2}
Use the distributive property to multiply \sqrt{2}-1 by x.
\sqrt{2}x-x=\sqrt{2}+y
Add y to both sides.
\left(\sqrt{2}-1\right)x=\sqrt{2}+y
Combine all terms containing x.
\left(\sqrt{2}-1\right)x=y+\sqrt{2}
The equation is in standard form.
\frac{\left(\sqrt{2}-1\right)x}{\sqrt{2}-1}=\frac{y+\sqrt{2}}{\sqrt{2}-1}
Divide both sides by \sqrt{2}-1.
x=\frac{y+\sqrt{2}}{\sqrt{2}-1}
Dividing by \sqrt{2}-1 undoes the multiplication by \sqrt{2}-1.
x=\left(\sqrt{2}+1\right)\left(y+\sqrt{2}\right)
Divide \sqrt{2}+y by \sqrt{2}-1.
\sqrt{2}x-x-y=\sqrt{2}
Use the distributive property to multiply \sqrt{2}-1 by x.
-x-y=\sqrt{2}-\sqrt{2}x
Subtract \sqrt{2}x from both sides.
-y=\sqrt{2}-\sqrt{2}x+x
Add x to both sides.
-y=-\sqrt{2}x+x+\sqrt{2}
Reorder the terms.
\frac{-y}{-1}=\frac{-\sqrt{2}x+x+\sqrt{2}}{-1}
Divide both sides by -1.
y=\frac{-\sqrt{2}x+x+\sqrt{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
y=-\left(-\sqrt{2}x+x+\sqrt{2}\right)
Divide -\sqrt{2}x+x+\sqrt{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}