Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{5}}{\sqrt{5}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{2}.
\frac{\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}{5-2}
Square \sqrt{5}. Square \sqrt{2}.
\frac{\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}{3}
Subtract 2 from 5 to get 3.
\frac{\left(\sqrt{2}+\sqrt{5}\right)^{2}}{3}
Multiply \sqrt{2}+\sqrt{5} and \sqrt{5}+\sqrt{2} to get \left(\sqrt{2}+\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+\sqrt{5}\right)^{2}.
\frac{2+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{3}
The square of \sqrt{2} is 2.
\frac{2+2\sqrt{10}+\left(\sqrt{5}\right)^{2}}{3}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{2+2\sqrt{10}+5}{3}
The square of \sqrt{5} is 5.
\frac{7+2\sqrt{10}}{3}
Add 2 and 5 to get 7.