Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{6}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{2}+\sqrt{3}-\sqrt{6} by each term of \sqrt{2}-\sqrt{3}+\sqrt{6}.
2-\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{6}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
2-\sqrt{6}+\sqrt{2}\sqrt{6}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2-\sqrt{6}+\sqrt{2}\sqrt{2}\sqrt{3}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2-\sqrt{6}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2-\sqrt{6}+2\sqrt{3}+\sqrt{6}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2+2\sqrt{3}-\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Combine -\sqrt{6} and \sqrt{6} to get 0.
2+2\sqrt{3}-3+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
The square of \sqrt{3} is 3.
-1+2\sqrt{3}+\sqrt{3}\sqrt{6}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Subtract 3 from 2 to get -1.
-1+2\sqrt{3}+\sqrt{3}\sqrt{3}\sqrt{2}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-1+2\sqrt{3}+3\sqrt{2}-\sqrt{6}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-1+2\sqrt{3}+3\sqrt{2}-\sqrt{2}\sqrt{3}\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-1+2\sqrt{3}+3\sqrt{2}-2\sqrt{3}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-1+3\sqrt{2}+\sqrt{3}\sqrt{6}-\left(\sqrt{6}\right)^{2}
Combine 2\sqrt{3} and -2\sqrt{3} to get 0.
-1+3\sqrt{2}+\sqrt{3}\sqrt{3}\sqrt{2}-\left(\sqrt{6}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-1+3\sqrt{2}+3\sqrt{2}-\left(\sqrt{6}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-1+6\sqrt{2}-\left(\sqrt{6}\right)^{2}
Combine 3\sqrt{2} and 3\sqrt{2} to get 6\sqrt{2}.
-1+6\sqrt{2}-6
The square of \sqrt{6} is 6.
-7+6\sqrt{2}
Subtract 6 from -1 to get -7.