Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

8\left(3\sqrt{2}-\sqrt{\frac{1}{2}}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
8\left(3\sqrt{2}-\frac{\sqrt{1}}{\sqrt{2}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
8\left(3\sqrt{2}-\frac{1}{\sqrt{2}}\right)
Calculate the square root of 1 and get 1.
8\left(3\sqrt{2}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
8\left(3\sqrt{2}-\frac{\sqrt{2}}{2}\right)
The square of \sqrt{2} is 2.
8\left(\frac{2\times 3\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{2} times \frac{2}{2}.
8\times \frac{2\times 3\sqrt{2}-\sqrt{2}}{2}
Since \frac{2\times 3\sqrt{2}}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
8\times \frac{6\sqrt{2}-\sqrt{2}}{2}
Do the multiplications in 2\times 3\sqrt{2}-\sqrt{2}.
8\times \frac{5\sqrt{2}}{2}
Do the calculations in 6\sqrt{2}-\sqrt{2}.
4\times 5\sqrt{2}
Cancel out 2, the greatest common factor in 8 and 2.
20\sqrt{2}
Multiply 4 and 5 to get 20.