Evaluate
\frac{5\sqrt{2}}{4}-1\approx 0.767766953
Factor
\frac{5 \sqrt{2} - 4}{4} = 0.7677669529663689
Share
Copied to clipboard
\frac{\frac{\sqrt{125}}{\sqrt{8}}-\frac{1}{2}\sqrt{20}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{125}{8}} as the division of square roots \frac{\sqrt{125}}{\sqrt{8}}.
\frac{\frac{5\sqrt{5}}{\sqrt{8}}-\frac{1}{2}\sqrt{20}}{\sqrt{5}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{\frac{5\sqrt{5}}{2\sqrt{2}}-\frac{1}{2}\sqrt{20}}{\sqrt{5}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{5\sqrt{5}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\frac{1}{2}\sqrt{20}}{\sqrt{5}}
Rationalize the denominator of \frac{5\sqrt{5}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{5\sqrt{5}\sqrt{2}}{2\times 2}-\frac{1}{2}\sqrt{20}}{\sqrt{5}}
The square of \sqrt{2} is 2.
\frac{\frac{5\sqrt{10}}{2\times 2}-\frac{1}{2}\sqrt{20}}{\sqrt{5}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{5\sqrt{10}}{4}-\frac{1}{2}\sqrt{20}}{\sqrt{5}}
Multiply 2 and 2 to get 4.
\frac{\frac{5\sqrt{10}}{4}-\frac{1}{2}\times 2\sqrt{5}}{\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\frac{5\sqrt{10}}{4}-\sqrt{5}}{\sqrt{5}}
Cancel out 2 and 2.
\frac{\frac{5\sqrt{10}}{4}-\frac{4\sqrt{5}}{4}}{\sqrt{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{5} times \frac{4}{4}.
\frac{\frac{5\sqrt{10}-4\sqrt{5}}{4}}{\sqrt{5}}
Since \frac{5\sqrt{10}}{4} and \frac{4\sqrt{5}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{5\sqrt{10}-4\sqrt{5}}{4\sqrt{5}}
Express \frac{\frac{5\sqrt{10}-4\sqrt{5}}{4}}{\sqrt{5}} as a single fraction.
\frac{\left(5\sqrt{10}-4\sqrt{5}\right)\sqrt{5}}{4\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{10}-4\sqrt{5}}{4\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(5\sqrt{10}-4\sqrt{5}\right)\sqrt{5}}{4\times 5}
The square of \sqrt{5} is 5.
\frac{\left(5\sqrt{10}-4\sqrt{5}\right)\sqrt{5}}{20}
Multiply 4 and 5 to get 20.
\frac{5\sqrt{10}\sqrt{5}-4\left(\sqrt{5}\right)^{2}}{20}
Use the distributive property to multiply 5\sqrt{10}-4\sqrt{5} by \sqrt{5}.
\frac{5\sqrt{5}\sqrt{2}\sqrt{5}-4\left(\sqrt{5}\right)^{2}}{20}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{5\times 5\sqrt{2}-4\left(\sqrt{5}\right)^{2}}{20}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{25\sqrt{2}-4\left(\sqrt{5}\right)^{2}}{20}
Multiply 5 and 5 to get 25.
\frac{25\sqrt{2}-4\times 5}{20}
The square of \sqrt{5} is 5.
\frac{25\sqrt{2}-20}{20}
Multiply -4 and 5 to get -20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}