Solve for a (complex solution)
a\in \mathrm{C}
Solve for b (complex solution)
b\in \mathrm{C}
Solve for a
a\geq 0
b\geq 0
Solve for b
b\geq 0
a\geq 0
Share
Copied to clipboard
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Consider \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Calculate \sqrt{a} to the power of 2 and get a.
a-b=a-b
Calculate \sqrt{b} to the power of 2 and get b.
a-b-a=-b
Subtract a from both sides.
-b=-b
Combine a and -a to get 0.
b=b
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Consider \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Calculate \sqrt{a} to the power of 2 and get a.
a-b=a-b
Calculate \sqrt{b} to the power of 2 and get b.
a-b+b=a
Add b to both sides.
a=a
Combine -b and b to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Consider \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Calculate \sqrt{a} to the power of 2 and get a.
a-b=a-b
Calculate \sqrt{b} to the power of 2 and get b.
a-b-a=-b
Subtract a from both sides.
-b=-b
Combine a and -a to get 0.
b=b
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Consider \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Calculate \sqrt{a} to the power of 2 and get a.
a-b=a-b
Calculate \sqrt{b} to the power of 2 and get b.
a-b+b=a
Add b to both sides.
a=a
Combine -b and b to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}