Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Consider \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Calculate \sqrt{a} to the power of 2 and get a.
a-b=a-b
Calculate \sqrt{b} to the power of 2 and get b.
a-b-a=-b
Subtract a from both sides.
-b=-b
Combine a and -a to get 0.
b=b
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Consider \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Calculate \sqrt{a} to the power of 2 and get a.
a-b=a-b
Calculate \sqrt{b} to the power of 2 and get b.
a-b+b=a
Add b to both sides.
a=a
Combine -b and b to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Consider \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Calculate \sqrt{a} to the power of 2 and get a.
a-b=a-b
Calculate \sqrt{b} to the power of 2 and get b.
a-b-a=-b
Subtract a from both sides.
-b=-b
Combine a and -a to get 0.
b=b
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Consider \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Calculate \sqrt{a} to the power of 2 and get a.
a-b=a-b
Calculate \sqrt{b} to the power of 2 and get b.
a-b+b=a
Add b to both sides.
a=a
Combine -b and b to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.