Solve for b
b=\frac{9\sqrt{2}a}{2}+4a-27\sqrt{2}
a\geq 0
Solve for a
a=-\frac{\left(4\sqrt{2}-9\right)\left(\sqrt{2}b+54\right)}{49}
b\geq -27\sqrt{2}
Share
Copied to clipboard
\left(\sqrt{a}\right)^{2}+2\sqrt{a}\sqrt{8a}+\left(\sqrt{8a}\right)^{2}=54+b\sqrt{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\sqrt{a}+\sqrt{8a}\right)^{2}.
a+2\sqrt{a}\sqrt{8a}+\left(\sqrt{8a}\right)^{2}=54+b\sqrt{2}
Calculate \sqrt{a} to the power of 2 and get a.
a+2\sqrt{a}\sqrt{8a}+8a=54+b\sqrt{2}
Calculate \sqrt{8a} to the power of 2 and get 8a.
9a+2\sqrt{a}\sqrt{8a}=54+b\sqrt{2}
Combine a and 8a to get 9a.
54+b\sqrt{2}=9a+2\sqrt{a}\sqrt{8a}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{2}=9a+2\sqrt{a}\sqrt{8a}-54
Subtract 54 from both sides.
\sqrt{2}b=2\sqrt{a}\sqrt{8a}+9a-54
The equation is in standard form.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{4\sqrt{2}a+9a-54}{\sqrt{2}}
Divide both sides by \sqrt{2}.
b=\frac{4\sqrt{2}a+9a-54}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
b=\frac{\sqrt{2}\left(4\sqrt{2}a+9a-54\right)}{2}
Divide 9a+4a\sqrt{2}-54 by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}