Solve for a
a=\sqrt{217131}\approx 465.973175194
a=-\sqrt{217131}\approx -465.973175194
Share
Copied to clipboard
a^{2}+25=466^{2}
Calculate \sqrt{a^{2}+25} to the power of 2 and get a^{2}+25.
a^{2}+25=217156
Calculate 466 to the power of 2 and get 217156.
a^{2}=217156-25
Subtract 25 from both sides.
a^{2}=217131
Subtract 25 from 217156 to get 217131.
a=\sqrt{217131} a=-\sqrt{217131}
Take the square root of both sides of the equation.
a^{2}+25=466^{2}
Calculate \sqrt{a^{2}+25} to the power of 2 and get a^{2}+25.
a^{2}+25=217156
Calculate 466 to the power of 2 and get 217156.
a^{2}+25-217156=0
Subtract 217156 from both sides.
a^{2}-217131=0
Subtract 217156 from 25 to get -217131.
a=\frac{0±\sqrt{0^{2}-4\left(-217131\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -217131 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-217131\right)}}{2}
Square 0.
a=\frac{0±\sqrt{868524}}{2}
Multiply -4 times -217131.
a=\frac{0±2\sqrt{217131}}{2}
Take the square root of 868524.
a=\sqrt{217131}
Now solve the equation a=\frac{0±2\sqrt{217131}}{2} when ± is plus.
a=-\sqrt{217131}
Now solve the equation a=\frac{0±2\sqrt{217131}}{2} when ± is minus.
a=\sqrt{217131} a=-\sqrt{217131}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}