Evaluate
100-12\sqrt{41}\approx 23.162509151
Expand
100-12\sqrt{41}
Share
Copied to clipboard
\left(\sqrt{82}\right)^{2}-6\sqrt{82}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{82}-3\sqrt{2}\right)^{2}.
82-6\sqrt{82}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
The square of \sqrt{82} is 82.
82-6\sqrt{2}\sqrt{41}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
Factor 82=2\times 41. Rewrite the square root of the product \sqrt{2\times 41} as the product of square roots \sqrt{2}\sqrt{41}.
82-6\times 2\sqrt{41}+9\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
82-12\sqrt{41}+9\left(\sqrt{2}\right)^{2}
Multiply -6 and 2 to get -12.
82-12\sqrt{41}+9\times 2
The square of \sqrt{2} is 2.
82-12\sqrt{41}+18
Multiply 9 and 2 to get 18.
100-12\sqrt{41}
Add 82 and 18 to get 100.
\left(\sqrt{82}\right)^{2}-6\sqrt{82}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{82}-3\sqrt{2}\right)^{2}.
82-6\sqrt{82}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
The square of \sqrt{82} is 82.
82-6\sqrt{2}\sqrt{41}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
Factor 82=2\times 41. Rewrite the square root of the product \sqrt{2\times 41} as the product of square roots \sqrt{2}\sqrt{41}.
82-6\times 2\sqrt{41}+9\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
82-12\sqrt{41}+9\left(\sqrt{2}\right)^{2}
Multiply -6 and 2 to get -12.
82-12\sqrt{41}+9\times 2
The square of \sqrt{2} is 2.
82-12\sqrt{41}+18
Multiply 9 and 2 to get 18.
100-12\sqrt{41}
Add 82 and 18 to get 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}