Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{2}-\sqrt{6}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-\sqrt{6}\right)^{2}.
4\times 2-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
8-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Multiply 4 and 2 to get 8.
8-4\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
8-4\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
8-8\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply -4 and 2 to get -8.
8-8\sqrt{3}+6
The square of \sqrt{6} is 6.
14-8\sqrt{3}
Add 8 and 6 to get 14.
\left(2\sqrt{2}-\sqrt{6}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-\sqrt{6}\right)^{2}.
4\times 2-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
The square of \sqrt{2} is 2.
8-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Multiply 4 and 2 to get 8.
8-4\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
8-4\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
8-8\sqrt{3}+\left(\sqrt{6}\right)^{2}
Multiply -4 and 2 to get -8.
8-8\sqrt{3}+6
The square of \sqrt{6} is 6.
14-8\sqrt{3}
Add 8 and 6 to get 14.