Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{2}-\sqrt{40}+\sqrt{18}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(2\sqrt{2}-2\sqrt{10}+\sqrt{18}\right)^{2}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\left(2\sqrt{2}-2\sqrt{10}+3\sqrt{2}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(5\sqrt{2}-2\sqrt{10}\right)^{2}
Combine 2\sqrt{2} and 3\sqrt{2} to get 5\sqrt{2}.
25\left(\sqrt{2}\right)^{2}-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{2}-2\sqrt{10}\right)^{2}.
25\times 2-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
The square of \sqrt{2} is 2.
50-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
Multiply 25 and 2 to get 50.
50-20\sqrt{2}\sqrt{2}\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
50-20\times 2\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
50-40\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Multiply -20 and 2 to get -40.
50-40\sqrt{5}+4\times 10
The square of \sqrt{10} is 10.
50-40\sqrt{5}+40
Multiply 4 and 10 to get 40.
90-40\sqrt{5}
Add 50 and 40 to get 90.
\left(2\sqrt{2}-\sqrt{40}+\sqrt{18}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(2\sqrt{2}-2\sqrt{10}+\sqrt{18}\right)^{2}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\left(2\sqrt{2}-2\sqrt{10}+3\sqrt{2}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(5\sqrt{2}-2\sqrt{10}\right)^{2}
Combine 2\sqrt{2} and 3\sqrt{2} to get 5\sqrt{2}.
25\left(\sqrt{2}\right)^{2}-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{2}-2\sqrt{10}\right)^{2}.
25\times 2-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
The square of \sqrt{2} is 2.
50-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
Multiply 25 and 2 to get 50.
50-20\sqrt{2}\sqrt{2}\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
50-20\times 2\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
50-40\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Multiply -20 and 2 to get -40.
50-40\sqrt{5}+4\times 10
The square of \sqrt{10} is 10.
50-40\sqrt{5}+40
Multiply 4 and 10 to get 40.
90-40\sqrt{5}
Add 50 and 40 to get 90.