Evaluate
90-40\sqrt{5}\approx 0.5572809
Expand
90-40\sqrt{5}
Share
Copied to clipboard
\left(2\sqrt{2}-\sqrt{40}+\sqrt{18}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(2\sqrt{2}-2\sqrt{10}+\sqrt{18}\right)^{2}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\left(2\sqrt{2}-2\sqrt{10}+3\sqrt{2}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(5\sqrt{2}-2\sqrt{10}\right)^{2}
Combine 2\sqrt{2} and 3\sqrt{2} to get 5\sqrt{2}.
25\left(\sqrt{2}\right)^{2}-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{2}-2\sqrt{10}\right)^{2}.
25\times 2-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
The square of \sqrt{2} is 2.
50-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
Multiply 25 and 2 to get 50.
50-20\sqrt{2}\sqrt{2}\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
50-20\times 2\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
50-40\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Multiply -20 and 2 to get -40.
50-40\sqrt{5}+4\times 10
The square of \sqrt{10} is 10.
50-40\sqrt{5}+40
Multiply 4 and 10 to get 40.
90-40\sqrt{5}
Add 50 and 40 to get 90.
\left(2\sqrt{2}-\sqrt{40}+\sqrt{18}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(2\sqrt{2}-2\sqrt{10}+\sqrt{18}\right)^{2}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\left(2\sqrt{2}-2\sqrt{10}+3\sqrt{2}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(5\sqrt{2}-2\sqrt{10}\right)^{2}
Combine 2\sqrt{2} and 3\sqrt{2} to get 5\sqrt{2}.
25\left(\sqrt{2}\right)^{2}-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{2}-2\sqrt{10}\right)^{2}.
25\times 2-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
The square of \sqrt{2} is 2.
50-20\sqrt{2}\sqrt{10}+4\left(\sqrt{10}\right)^{2}
Multiply 25 and 2 to get 50.
50-20\sqrt{2}\sqrt{2}\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
50-20\times 2\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
50-40\sqrt{5}+4\left(\sqrt{10}\right)^{2}
Multiply -20 and 2 to get -40.
50-40\sqrt{5}+4\times 10
The square of \sqrt{10} is 10.
50-40\sqrt{5}+40
Multiply 4 and 10 to get 40.
90-40\sqrt{5}
Add 50 and 40 to get 90.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}