Evaluate
\frac{3\left(\sqrt{2}+\sqrt{3}\right)}{2}\approx 4.719396555
Factor
\frac{3 {(\sqrt{2} + \sqrt{3})}}{2} = 4.719396554912959
Share
Copied to clipboard
2\sqrt{2}+3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}+3\times \frac{\sqrt{1}}{\sqrt{3}}-\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
2\sqrt{2}+3\times \frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}
Calculate the square root of 1 and get 1.
2\sqrt{2}+3\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\sqrt{2}+3\times \frac{\sqrt{3}}{3}-\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}
The square of \sqrt{3} is 3.
2\sqrt{2}+\sqrt{3}-\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}
Cancel out 3 and 3.
2\sqrt{2}+\sqrt{3}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{\sqrt{3}}{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\sqrt{2}+\sqrt{3}-\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}
The square of \sqrt{2} is 2.
\frac{3}{2}\sqrt{2}+\sqrt{3}+\frac{\sqrt{3}}{2}
Combine 2\sqrt{2} and -\frac{\sqrt{2}}{2} to get \frac{3}{2}\sqrt{2}.
\frac{3}{2}\sqrt{2}+\frac{3}{2}\sqrt{3}
Combine \sqrt{3} and \frac{\sqrt{3}}{2} to get \frac{3}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}