Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{8}\right)^{2}-\left(i\sqrt{11}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
8-\left(i\sqrt{11}\right)^{2}
The square of \sqrt{8} is 8.
8-i^{2}\left(\sqrt{11}\right)^{2}
Expand \left(i\sqrt{11}\right)^{2}.
8-\left(-\left(\sqrt{11}\right)^{2}\right)
Calculate i to the power of 2 and get -1.
8-\left(-11\right)
The square of \sqrt{11} is 11.
8+11
The opposite of -11 is 11.
19
Add 8 and 11 to get 19.
Re(\left(\sqrt{8}\right)^{2}-\left(i\sqrt{11}\right)^{2})
Consider \left(\sqrt{8}+i\sqrt{11}\right)\left(\sqrt{8}-i\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(8-\left(i\sqrt{11}\right)^{2})
The square of \sqrt{8} is 8.
Re(8-i^{2}\left(\sqrt{11}\right)^{2})
Expand \left(i\sqrt{11}\right)^{2}.
Re(8-\left(-\left(\sqrt{11}\right)^{2}\right))
Calculate i to the power of 2 and get -1.
Re(8-\left(-11\right))
The square of \sqrt{11} is 11.
Re(8+11)
The opposite of -11 is 11.
Re(19)
Add 8 and 11 to get 19.
19
The real part of 19 is 19.