Skip to main content
Evaluate
Tick mark Image

Share

7\times \frac{\sin(45)}{1+\cos(45)}
The square of \sqrt{7} is 7.
7\times \frac{\frac{\sqrt{2}}{2}}{1+\cos(45)}
Get the value of \sin(45) from trigonometric values table.
7\times \frac{\frac{\sqrt{2}}{2}}{1+\frac{\sqrt{2}}{2}}
Get the value of \cos(45) from trigonometric values table.
7\times \frac{\frac{\sqrt{2}}{2}}{\frac{2}{2}+\frac{\sqrt{2}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
7\times \frac{\frac{\sqrt{2}}{2}}{\frac{2+\sqrt{2}}{2}}
Since \frac{2}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
7\times \frac{\sqrt{2}\times 2}{2\left(2+\sqrt{2}\right)}
Divide \frac{\sqrt{2}}{2} by \frac{2+\sqrt{2}}{2} by multiplying \frac{\sqrt{2}}{2} by the reciprocal of \frac{2+\sqrt{2}}{2}.
7\times \frac{\sqrt{2}}{\sqrt{2}+2}
Cancel out 2 in both numerator and denominator.
7\times \frac{\sqrt{2}\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{2}+2} by multiplying numerator and denominator by \sqrt{2}-2.
7\times \frac{\sqrt{2}\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}
Consider \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7\times \frac{\sqrt{2}\left(\sqrt{2}-2\right)}{2-4}
Square \sqrt{2}. Square 2.
7\times \frac{\sqrt{2}\left(\sqrt{2}-2\right)}{-2}
Subtract 4 from 2 to get -2.
\frac{7\sqrt{2}\left(\sqrt{2}-2\right)}{-2}
Express 7\times \frac{\sqrt{2}\left(\sqrt{2}-2\right)}{-2} as a single fraction.
\frac{7\left(\sqrt{2}\right)^{2}-14\sqrt{2}}{-2}
Use the distributive property to multiply 7\sqrt{2} by \sqrt{2}-2.
\frac{7\times 2-14\sqrt{2}}{-2}
The square of \sqrt{2} is 2.
\frac{14-14\sqrt{2}}{-2}
Multiply 7 and 2 to get 14.