Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{7}\right)^{2}+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+3\right)^{2}.
7+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
The square of \sqrt{7} is 7.
16+6\sqrt{7}-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Add 7 and 9 to get 16.
16+6\sqrt{7}-\left(\left(\sqrt{14}\right)^{2}-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{14}-\sqrt{2}\right)^{2}.
16+6\sqrt{7}-\left(14-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{14} is 14.
16+6\sqrt{7}-\left(14-2\sqrt{2}\sqrt{7}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Factor 14=2\times 7. Rewrite the square root of the product \sqrt{2\times 7} as the product of square roots \sqrt{2}\sqrt{7}.
16+6\sqrt{7}-\left(14-2\times 2\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
16+6\sqrt{7}-\left(14-4\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
Multiply -2 and 2 to get -4.
16+6\sqrt{7}-\left(14-4\sqrt{7}+2\right)
The square of \sqrt{2} is 2.
16+6\sqrt{7}-\left(16-4\sqrt{7}\right)
Add 14 and 2 to get 16.
16+6\sqrt{7}-16+4\sqrt{7}
To find the opposite of 16-4\sqrt{7}, find the opposite of each term.
6\sqrt{7}+4\sqrt{7}
Subtract 16 from 16 to get 0.
10\sqrt{7}
Combine 6\sqrt{7} and 4\sqrt{7} to get 10\sqrt{7}.
\left(\sqrt{7}\right)^{2}+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+3\right)^{2}.
7+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
The square of \sqrt{7} is 7.
16+6\sqrt{7}-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Add 7 and 9 to get 16.
16+6\sqrt{7}-\left(\left(\sqrt{14}\right)^{2}-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{14}-\sqrt{2}\right)^{2}.
16+6\sqrt{7}-\left(14-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{14} is 14.
16+6\sqrt{7}-\left(14-2\sqrt{2}\sqrt{7}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Factor 14=2\times 7. Rewrite the square root of the product \sqrt{2\times 7} as the product of square roots \sqrt{2}\sqrt{7}.
16+6\sqrt{7}-\left(14-2\times 2\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
16+6\sqrt{7}-\left(14-4\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
Multiply -2 and 2 to get -4.
16+6\sqrt{7}-\left(14-4\sqrt{7}+2\right)
The square of \sqrt{2} is 2.
16+6\sqrt{7}-\left(16-4\sqrt{7}\right)
Add 14 and 2 to get 16.
16+6\sqrt{7}-16+4\sqrt{7}
To find the opposite of 16-4\sqrt{7}, find the opposite of each term.
6\sqrt{7}+4\sqrt{7}
Subtract 16 from 16 to get 0.
10\sqrt{7}
Combine 6\sqrt{7} and 4\sqrt{7} to get 10\sqrt{7}.