Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{7}\right)^{2}-\sqrt{7}\sqrt{5}+\sqrt{6}\sqrt{7}-\sqrt{6}\sqrt{5}-\left(\sqrt{3}+3\sqrt{2}\right)^{2}
Use the distributive property to multiply \sqrt{7}+\sqrt{6} by \sqrt{7}-\sqrt{5}.
7-\sqrt{7}\sqrt{5}+\sqrt{6}\sqrt{7}-\sqrt{6}\sqrt{5}-\left(\sqrt{3}+3\sqrt{2}\right)^{2}
The square of \sqrt{7} is 7.
7-\sqrt{35}+\sqrt{6}\sqrt{7}-\sqrt{6}\sqrt{5}-\left(\sqrt{3}+3\sqrt{2}\right)^{2}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
7-\sqrt{35}+\sqrt{42}-\sqrt{6}\sqrt{5}-\left(\sqrt{3}+3\sqrt{2}\right)^{2}
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
7-\sqrt{35}+\sqrt{42}-\sqrt{30}-\left(\sqrt{3}+3\sqrt{2}\right)^{2}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
7-\sqrt{35}+\sqrt{42}-\sqrt{30}-\left(\left(\sqrt{3}\right)^{2}+6\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+3\sqrt{2}\right)^{2}.
7-\sqrt{35}+\sqrt{42}-\sqrt{30}-\left(3+6\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{3} is 3.
7-\sqrt{35}+\sqrt{42}-\sqrt{30}-\left(3+6\sqrt{6}+9\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
7-\sqrt{35}+\sqrt{42}-\sqrt{30}-\left(3+6\sqrt{6}+9\times 2\right)
The square of \sqrt{2} is 2.
7-\sqrt{35}+\sqrt{42}-\sqrt{30}-\left(3+6\sqrt{6}+18\right)
Multiply 9 and 2 to get 18.
7-\sqrt{35}+\sqrt{42}-\sqrt{30}-\left(21+6\sqrt{6}\right)
Add 3 and 18 to get 21.
7-\sqrt{35}+\sqrt{42}-\sqrt{30}-21-6\sqrt{6}
To find the opposite of 21+6\sqrt{6}, find the opposite of each term.
-14-\sqrt{35}+\sqrt{42}-\sqrt{30}-6\sqrt{6}
Subtract 21 from 7 to get -14.