Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{7}\right)^{2}+4\sqrt{7}\sqrt{3}+\sqrt{3}\sqrt{7}+4\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{7}+\sqrt{3} by each term of \sqrt{7}+4\sqrt{3}.
7+4\sqrt{7}\sqrt{3}+\sqrt{3}\sqrt{7}+4\left(\sqrt{3}\right)^{2}
The square of \sqrt{7} is 7.
7+4\sqrt{21}+\sqrt{3}\sqrt{7}+4\left(\sqrt{3}\right)^{2}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
7+4\sqrt{21}+\sqrt{21}+4\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
7+5\sqrt{21}+4\left(\sqrt{3}\right)^{2}
Combine 4\sqrt{21} and \sqrt{21} to get 5\sqrt{21}.
7+5\sqrt{21}+4\times 3
The square of \sqrt{3} is 3.
7+5\sqrt{21}+12
Multiply 4 and 3 to get 12.
19+5\sqrt{21}
Add 7 and 12 to get 19.