Evaluate
27-6\sqrt{6}\approx 12.303061543
Share
Copied to clipboard
\left(\sqrt{6}\right)^{2}-6\sqrt{6}+9-\left(\sqrt{6}-2\right)\left(\sqrt{16}+2\right)+2\sqrt{54}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-3\right)^{2}.
6-6\sqrt{6}+9-\left(\sqrt{6}-2\right)\left(\sqrt{16}+2\right)+2\sqrt{54}
The square of \sqrt{6} is 6.
15-6\sqrt{6}-\left(\sqrt{6}-2\right)\left(\sqrt{16}+2\right)+2\sqrt{54}
Add 6 and 9 to get 15.
15-6\sqrt{6}-\left(\sqrt{6}-2\right)\left(4+2\right)+2\sqrt{54}
Calculate the square root of 16 and get 4.
15-6\sqrt{6}-\left(\sqrt{6}-2\right)\times 6+2\sqrt{54}
Add 4 and 2 to get 6.
15-6\sqrt{6}-\left(6\sqrt{6}-12\right)+2\sqrt{54}
Use the distributive property to multiply \sqrt{6}-2 by 6.
15-6\sqrt{6}-6\sqrt{6}+12+2\sqrt{54}
To find the opposite of 6\sqrt{6}-12, find the opposite of each term.
15-12\sqrt{6}+12+2\sqrt{54}
Combine -6\sqrt{6} and -6\sqrt{6} to get -12\sqrt{6}.
27-12\sqrt{6}+2\sqrt{54}
Add 15 and 12 to get 27.
27-12\sqrt{6}+2\times 3\sqrt{6}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
27-12\sqrt{6}+6\sqrt{6}
Multiply 2 and 3 to get 6.
27-6\sqrt{6}
Combine -12\sqrt{6} and 6\sqrt{6} to get -6\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}