Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{6}\right)^{2}-6\sqrt{6}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-3\sqrt{2}\right)^{2}.
6-6\sqrt{6}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
The square of \sqrt{6} is 6.
6-6\sqrt{2}\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-6\times 2\sqrt{3}+9\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-12\sqrt{3}+9\left(\sqrt{2}\right)^{2}
Multiply -6 and 2 to get -12.
6-12\sqrt{3}+9\times 2
The square of \sqrt{2} is 2.
6-12\sqrt{3}+18
Multiply 9 and 2 to get 18.
24-12\sqrt{3}
Add 6 and 18 to get 24.
\left(\sqrt{6}\right)^{2}-6\sqrt{6}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-3\sqrt{2}\right)^{2}.
6-6\sqrt{6}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
The square of \sqrt{6} is 6.
6-6\sqrt{2}\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-6\times 2\sqrt{3}+9\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-12\sqrt{3}+9\left(\sqrt{2}\right)^{2}
Multiply -6 and 2 to get -12.
6-12\sqrt{3}+9\times 2
The square of \sqrt{2} is 2.
6-12\sqrt{3}+18
Multiply 9 and 2 to get 18.
24-12\sqrt{3}
Add 6 and 18 to get 24.