Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{6}-2\sqrt{5}\right)^{2}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(\sqrt{6}\right)^{2}-4\sqrt{6}\sqrt{5}+4\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-2\sqrt{5}\right)^{2}.
6-4\sqrt{6}\sqrt{5}+4\left(\sqrt{5}\right)^{2}
The square of \sqrt{6} is 6.
6-4\sqrt{30}+4\left(\sqrt{5}\right)^{2}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
6-4\sqrt{30}+4\times 5
The square of \sqrt{5} is 5.
6-4\sqrt{30}+20
Multiply 4 and 5 to get 20.
26-4\sqrt{30}
Add 6 and 20 to get 26.
\left(\sqrt{6}-2\sqrt{5}\right)^{2}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(\sqrt{6}\right)^{2}-4\sqrt{6}\sqrt{5}+4\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-2\sqrt{5}\right)^{2}.
6-4\sqrt{6}\sqrt{5}+4\left(\sqrt{5}\right)^{2}
The square of \sqrt{6} is 6.
6-4\sqrt{30}+4\left(\sqrt{5}\right)^{2}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
6-4\sqrt{30}+4\times 5
The square of \sqrt{5} is 5.
6-4\sqrt{30}+20
Multiply 4 and 5 to get 20.
26-4\sqrt{30}
Add 6 and 20 to get 26.