Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
The square of \sqrt{6} is 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Multiply -2 and 2 to get -4.
6-4\sqrt{3}+2-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
The square of \sqrt{2} is 2.
8-4\sqrt{3}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Add 6 and 2 to get 8.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
Square \sqrt{6}. Square \sqrt{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{4}
Subtract 2 from 6 to get 4.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4}
Multiply \sqrt{6}-\sqrt{2} and \sqrt{6}-\sqrt{2} to get \left(\sqrt{6}-\sqrt{2}\right)^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
8-4\sqrt{3}-\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
The square of \sqrt{6} is 6.
8-4\sqrt{3}-\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
8-4\sqrt{3}-\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
Multiply -2 and 2 to get -4.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+2}{4}
The square of \sqrt{2} is 2.
8-4\sqrt{3}-\frac{8-4\sqrt{3}}{4}
Add 6 and 2 to get 8.
8-4\sqrt{3}-\left(2-\sqrt{3}\right)
Divide each term of 8-4\sqrt{3} by 4 to get 2-\sqrt{3}.
8-4\sqrt{3}-2+\sqrt{3}
To find the opposite of 2-\sqrt{3}, find the opposite of each term.
6-4\sqrt{3}+\sqrt{3}
Subtract 2 from 8 to get 6.
6-3\sqrt{3}
Combine -4\sqrt{3} and \sqrt{3} to get -3\sqrt{3}.