Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1+2+\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
\left(6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1+2+\sqrt{3}\right)^{2}
The square of \sqrt{6} is 6.
\left(6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1+2+\sqrt{3}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\left(6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)\left(1+2+\sqrt{3}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\left(6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)\left(1+2+\sqrt{3}\right)^{2}
Multiply -2 and 2 to get -4.
\left(6-4\sqrt{3}+2\right)\left(1+2+\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
\left(8-4\sqrt{3}\right)\left(1+2+\sqrt{3}\right)^{2}
Add 6 and 2 to get 8.
\left(8-4\sqrt{3}\right)\left(3+\sqrt{3}\right)^{2}
Add 1 and 2 to get 3.
\left(8-4\sqrt{3}\right)\left(9+6\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{3}\right)^{2}.
\left(8-4\sqrt{3}\right)\left(9+6\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
\left(8-4\sqrt{3}\right)\left(12+6\sqrt{3}\right)
Add 9 and 3 to get 12.
96-24\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply 8-4\sqrt{3} by 12+6\sqrt{3} and combine like terms.
96-24\times 3
The square of \sqrt{3} is 3.
96-72
Multiply -24 and 3 to get -72.
24
Subtract 72 from 96 to get 24.