Evaluate
\frac{\sqrt{10}+4\sqrt{5}+6\sqrt{2}+24}{31}\approx 1.438446159
Share
Copied to clipboard
\frac{\sqrt{6}+4\sqrt{3}}{\sqrt{108}-\sqrt{15}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\sqrt{6}+4\sqrt{3}}{6\sqrt{3}-\sqrt{15}}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
\frac{\left(\sqrt{6}+4\sqrt{3}\right)\left(6\sqrt{3}+\sqrt{15}\right)}{\left(6\sqrt{3}-\sqrt{15}\right)\left(6\sqrt{3}+\sqrt{15}\right)}
Rationalize the denominator of \frac{\sqrt{6}+4\sqrt{3}}{6\sqrt{3}-\sqrt{15}} by multiplying numerator and denominator by 6\sqrt{3}+\sqrt{15}.
\frac{\left(\sqrt{6}+4\sqrt{3}\right)\left(6\sqrt{3}+\sqrt{15}\right)}{\left(6\sqrt{3}\right)^{2}-\left(\sqrt{15}\right)^{2}}
Consider \left(6\sqrt{3}-\sqrt{15}\right)\left(6\sqrt{3}+\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{6}+4\sqrt{3}\right)\left(6\sqrt{3}+\sqrt{15}\right)}{6^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{15}\right)^{2}}
Expand \left(6\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{6}+4\sqrt{3}\right)\left(6\sqrt{3}+\sqrt{15}\right)}{36\left(\sqrt{3}\right)^{2}-\left(\sqrt{15}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\left(\sqrt{6}+4\sqrt{3}\right)\left(6\sqrt{3}+\sqrt{15}\right)}{36\times 3-\left(\sqrt{15}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{6}+4\sqrt{3}\right)\left(6\sqrt{3}+\sqrt{15}\right)}{108-\left(\sqrt{15}\right)^{2}}
Multiply 36 and 3 to get 108.
\frac{\left(\sqrt{6}+4\sqrt{3}\right)\left(6\sqrt{3}+\sqrt{15}\right)}{108-15}
The square of \sqrt{15} is 15.
\frac{\left(\sqrt{6}+4\sqrt{3}\right)\left(6\sqrt{3}+\sqrt{15}\right)}{93}
Subtract 15 from 108 to get 93.
\frac{6\sqrt{6}\sqrt{3}+\sqrt{6}\sqrt{15}+24\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{15}}{93}
Apply the distributive property by multiplying each term of \sqrt{6}+4\sqrt{3} by each term of 6\sqrt{3}+\sqrt{15}.
\frac{6\sqrt{3}\sqrt{2}\sqrt{3}+\sqrt{6}\sqrt{15}+24\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{15}}{93}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{6\times 3\sqrt{2}+\sqrt{6}\sqrt{15}+24\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{15}}{93}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{18\sqrt{2}+\sqrt{6}\sqrt{15}+24\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{15}}{93}
Multiply 6 and 3 to get 18.
\frac{18\sqrt{2}+\sqrt{90}+24\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{15}}{93}
To multiply \sqrt{6} and \sqrt{15}, multiply the numbers under the square root.
\frac{18\sqrt{2}+\sqrt{90}+24\times 3+4\sqrt{3}\sqrt{15}}{93}
The square of \sqrt{3} is 3.
\frac{18\sqrt{2}+\sqrt{90}+72+4\sqrt{3}\sqrt{15}}{93}
Multiply 24 and 3 to get 72.
\frac{18\sqrt{2}+\sqrt{90}+72+4\sqrt{3}\sqrt{3}\sqrt{5}}{93}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{18\sqrt{2}+\sqrt{90}+72+4\times 3\sqrt{5}}{93}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{18\sqrt{2}+\sqrt{90}+72+12\sqrt{5}}{93}
Multiply 4 and 3 to get 12.
\frac{18\sqrt{2}+3\sqrt{10}+72+12\sqrt{5}}{93}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}