Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{6}+2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Square \sqrt{6}+\sqrt{3}+\sqrt{2}-1.
2\sqrt{6}+2\sqrt{2}\sqrt{6}+2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{6}+2\sqrt{2}\sqrt{2}\sqrt{3}+2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{6}+2\times 2\sqrt{3}+2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{6}+4\sqrt{3}+2\sqrt{3}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Multiply 2 and 2 to get 4.
2\sqrt{6}+4\sqrt{3}+2\sqrt{3}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\sqrt{6}+4\sqrt{3}+2\times 3\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{6}+4\sqrt{3}+6\sqrt{2}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Multiply 2 and 3 to get 6.
2\sqrt{6}+4\sqrt{3}+6\sqrt{2}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
The square of \sqrt{2} is 2.
2\sqrt{6}+4\sqrt{3}+6\sqrt{2}+2+3+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
The square of \sqrt{3} is 3.
2\sqrt{6}+4\sqrt{3}+6\sqrt{2}+5+\left(\sqrt{6}\right)^{2}-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Add 2 and 3 to get 5.
2\sqrt{6}+4\sqrt{3}+6\sqrt{2}+5+6-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
The square of \sqrt{6} is 6.
2\sqrt{6}+4\sqrt{3}+6\sqrt{2}+11-2\sqrt{2}-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Add 5 and 6 to get 11.
2\sqrt{6}+4\sqrt{3}+4\sqrt{2}+11-2\sqrt{3}-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Combine 6\sqrt{2} and -2\sqrt{2} to get 4\sqrt{2}.
2\sqrt{6}+2\sqrt{3}+4\sqrt{2}+11-2\sqrt{6}+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Combine 4\sqrt{3} and -2\sqrt{3} to get 2\sqrt{3}.
2\sqrt{3}+4\sqrt{2}+11+1-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Combine 2\sqrt{6} and -2\sqrt{6} to get 0.
2\sqrt{3}+4\sqrt{2}+12-\left(\sqrt{6}+\sqrt{3}-\sqrt{2}+1\right)
Add 11 and 1 to get 12.
2\sqrt{3}+4\sqrt{2}+12-\sqrt{6}-\sqrt{3}+\sqrt{2}-1
To find the opposite of \sqrt{6}+\sqrt{3}-\sqrt{2}+1, find the opposite of each term.
\sqrt{3}+4\sqrt{2}+12-\sqrt{6}+\sqrt{2}-1
Combine 2\sqrt{3} and -\sqrt{3} to get \sqrt{3}.
\sqrt{3}+5\sqrt{2}+12-\sqrt{6}-1
Combine 4\sqrt{2} and \sqrt{2} to get 5\sqrt{2}.
\sqrt{3}+5\sqrt{2}+11-\sqrt{6}
Subtract 1 from 12 to get 11.