Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}-\left(2-\sqrt{6}\right)^{2}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5-\left(\sqrt{3}\right)^{2}-\left(2-\sqrt{6}\right)^{2}
The square of \sqrt{5} is 5.
5-3-\left(2-\sqrt{6}\right)^{2}
The square of \sqrt{3} is 3.
2-\left(2-\sqrt{6}\right)^{2}
Subtract 3 from 5 to get 2.
2-\left(4-4\sqrt{6}+\left(\sqrt{6}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{6}\right)^{2}.
2-\left(4-4\sqrt{6}+6\right)
The square of \sqrt{6} is 6.
2-\left(10-4\sqrt{6}\right)
Add 4 and 6 to get 10.
2-10+4\sqrt{6}
To find the opposite of 10-4\sqrt{6}, find the opposite of each term.
-8+4\sqrt{6}
Subtract 10 from 2 to get -8.