Evaluate
4\left(\sqrt{6}-2\right)\approx 1.797958971
Share
Copied to clipboard
\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}-\left(2-\sqrt{6}\right)^{2}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5-\left(\sqrt{3}\right)^{2}-\left(2-\sqrt{6}\right)^{2}
The square of \sqrt{5} is 5.
5-3-\left(2-\sqrt{6}\right)^{2}
The square of \sqrt{3} is 3.
2-\left(2-\sqrt{6}\right)^{2}
Subtract 3 from 5 to get 2.
2-\left(4-4\sqrt{6}+\left(\sqrt{6}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{6}\right)^{2}.
2-\left(4-4\sqrt{6}+6\right)
The square of \sqrt{6} is 6.
2-\left(10-4\sqrt{6}\right)
Add 4 and 6 to get 10.
2-10+4\sqrt{6}
To find the opposite of 10-4\sqrt{6}, find the opposite of each term.
-8+4\sqrt{6}
Subtract 10 from 2 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}