Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}+\sqrt{2}\right)^{2}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5-\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}+\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
5-3-\left(\sqrt{6}+\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
2-\left(\sqrt{6}+\sqrt{2}\right)^{2}
Subtract 3 from 5 to get 2.
2-\left(\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+\sqrt{2}\right)^{2}.
2-\left(6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{6} is 6.
2-\left(6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2-\left(6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
2-\left(6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)
Multiply 2 and 2 to get 4.
2-\left(6+4\sqrt{3}+2\right)
The square of \sqrt{2} is 2.
2-\left(8+4\sqrt{3}\right)
Add 6 and 2 to get 8.
2-8-4\sqrt{3}
To find the opposite of 8+4\sqrt{3}, find the opposite of each term.
-6-4\sqrt{3}
Subtract 8 from 2 to get -6.