Evaluate
4\left(\sqrt{10}-\sqrt{15}\right)\approx -2.842822744
Expand
4 \sqrt{10} - 4 \sqrt{15} = -2.842822744
Share
Copied to clipboard
2\sqrt{2}\sqrt{5}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
Square \sqrt{5}-\sqrt{3}+\sqrt{2}.
2\sqrt{10}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+2+3+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+5+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
Add 2 and 3 to get 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+5+5-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
Add 5 and 5 to get 10.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{3}\sqrt{5}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
Square \sqrt{5}+\sqrt{3}-\sqrt{2}.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{2}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{2} is 2.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+2+3+\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{3} is 3.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+5+\left(\sqrt{5}\right)^{2}\right)
Add 2 and 3 to get 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+5+5\right)
The square of \sqrt{5} is 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+10\right)
Add 5 and 5 to get 10.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-2\sqrt{15}+2\sqrt{6}+2\sqrt{10}-10
To find the opposite of 2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+10, find the opposite of each term.
2\sqrt{10}-2\sqrt{6}-4\sqrt{15}+10+2\sqrt{6}+2\sqrt{10}-10
Combine -2\sqrt{15} and -2\sqrt{15} to get -4\sqrt{15}.
2\sqrt{10}-4\sqrt{15}+10+2\sqrt{10}-10
Combine -2\sqrt{6} and 2\sqrt{6} to get 0.
4\sqrt{10}-4\sqrt{15}+10-10
Combine 2\sqrt{10} and 2\sqrt{10} to get 4\sqrt{10}.
4\sqrt{10}-4\sqrt{15}
Subtract 10 from 10 to get 0.
2\sqrt{2}\sqrt{5}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
Square \sqrt{5}-\sqrt{3}+\sqrt{2}.
2\sqrt{10}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+2+3+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+5+\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
Add 2 and 3 to get 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+5+5-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(\sqrt{5}+\sqrt{3}-\sqrt{2}\right)^{2}
Add 5 and 5 to get 10.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{3}\sqrt{5}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
Square \sqrt{5}+\sqrt{3}-\sqrt{2}.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{2}\sqrt{3}-2\sqrt{2}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{2}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{2} is 2.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+2+3+\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{3} is 3.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+5+\left(\sqrt{5}\right)^{2}\right)
Add 2 and 3 to get 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+5+5\right)
The square of \sqrt{5} is 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-\left(2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+10\right)
Add 5 and 5 to get 10.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10-2\sqrt{15}+2\sqrt{6}+2\sqrt{10}-10
To find the opposite of 2\sqrt{15}-2\sqrt{6}-2\sqrt{10}+10, find the opposite of each term.
2\sqrt{10}-2\sqrt{6}-4\sqrt{15}+10+2\sqrt{6}+2\sqrt{10}-10
Combine -2\sqrt{15} and -2\sqrt{15} to get -4\sqrt{15}.
2\sqrt{10}-4\sqrt{15}+10+2\sqrt{10}-10
Combine -2\sqrt{6} and 2\sqrt{6} to get 0.
4\sqrt{10}-4\sqrt{15}+10-10
Combine 2\sqrt{10} and 2\sqrt{10} to get 4\sqrt{10}.
4\sqrt{10}-4\sqrt{15}
Subtract 10 from 10 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}