Evaluate
2\left(\sqrt{10}+5-\sqrt{6}-\sqrt{15}\right)\approx 3.679609142
Expand
2 \sqrt{10} + 10 - 2 \sqrt{6} - 2 \sqrt{15} = 3.679609142
Share
Copied to clipboard
2\sqrt{2}\sqrt{5}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
Square \sqrt{5}-\sqrt{3}+\sqrt{2}.
2\sqrt{10}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+2+3+\left(\sqrt{5}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+5+\left(\sqrt{5}\right)^{2}
Add 2 and 3 to get 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+5+5
The square of \sqrt{5} is 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10
Add 5 and 5 to get 10.
2\sqrt{2}\sqrt{5}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
Square \sqrt{5}-\sqrt{3}+\sqrt{2}.
2\sqrt{10}-2\sqrt{2}\sqrt{3}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{3}\sqrt{5}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+2+\left(\sqrt{3}\right)^{2}+\left(\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+2+3+\left(\sqrt{5}\right)^{2}
The square of \sqrt{3} is 3.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+5+\left(\sqrt{5}\right)^{2}
Add 2 and 3 to get 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+5+5
The square of \sqrt{5} is 5.
2\sqrt{10}-2\sqrt{6}-2\sqrt{15}+10
Add 5 and 5 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}