Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{2}\right)^{2}.
5-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right)
The square of \sqrt{5} is 5.
5-2\sqrt{10}+\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5-2\sqrt{10}+2-\left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right)
The square of \sqrt{2} is 2.
7-2\sqrt{10}-\left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right)
Add 5 and 2 to get 7.
7-2\sqrt{10}-\left(\left(2\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}\right)
Consider \left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7-2\sqrt{10}-\left(2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}\right)
Expand \left(2\sqrt{3}\right)^{2}.
7-2\sqrt{10}-\left(4\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}\right)
Calculate 2 to the power of 2 and get 4.
7-2\sqrt{10}-\left(4\times 3-\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{3} is 3.
7-2\sqrt{10}-\left(12-\left(\sqrt{5}\right)^{2}\right)
Multiply 4 and 3 to get 12.
7-2\sqrt{10}-\left(12-5\right)
The square of \sqrt{5} is 5.
7-2\sqrt{10}-7
Subtract 5 from 12 to get 7.
-2\sqrt{10}
Subtract 7 from 7 to get 0.