Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\frac{2\sqrt{20}}{\sqrt{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{2}\right)^{2}.
5-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}+\frac{2\sqrt{20}}{\sqrt{2}}
The square of \sqrt{5} is 5.
5-2\sqrt{10}+\left(\sqrt{2}\right)^{2}+\frac{2\sqrt{20}}{\sqrt{2}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5-2\sqrt{10}+2+\frac{2\sqrt{20}}{\sqrt{2}}
The square of \sqrt{2} is 2.
7-2\sqrt{10}+\frac{2\sqrt{20}}{\sqrt{2}}
Add 5 and 2 to get 7.
7-2\sqrt{10}+\frac{2\times 2\sqrt{5}}{\sqrt{2}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
7-2\sqrt{10}+\frac{4\sqrt{5}}{\sqrt{2}}
Multiply 2 and 2 to get 4.
7-2\sqrt{10}+\frac{4\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{4\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
7-2\sqrt{10}+\frac{4\sqrt{5}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
7-2\sqrt{10}+\frac{4\sqrt{10}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
7-2\sqrt{10}+2\sqrt{10}
Divide 4\sqrt{10} by 2 to get 2\sqrt{10}.
7
Combine -2\sqrt{10} and 2\sqrt{10} to get 0.