Skip to main content
Evaluate
Tick mark Image

Share

\frac{\sqrt{30}-2\sqrt{15}}{\sqrt{15}}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
\frac{\left(\sqrt{30}-2\sqrt{15}\right)\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{30}-2\sqrt{15}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\left(\sqrt{30}-2\sqrt{15}\right)\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{\sqrt{30}\sqrt{15}-2\left(\sqrt{15}\right)^{2}}{15}
Use the distributive property to multiply \sqrt{30}-2\sqrt{15} by \sqrt{15}.
\frac{\sqrt{15}\sqrt{2}\sqrt{15}-2\left(\sqrt{15}\right)^{2}}{15}
Factor 30=15\times 2. Rewrite the square root of the product \sqrt{15\times 2} as the product of square roots \sqrt{15}\sqrt{2}.
\frac{15\sqrt{2}-2\left(\sqrt{15}\right)^{2}}{15}
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{15\sqrt{2}-2\times 15}{15}
The square of \sqrt{15} is 15.
\frac{15\sqrt{2}-30}{15}
Multiply -2 and 15 to get -30.
\sqrt{2}-2
Divide each term of 15\sqrt{2}-30 by 15 to get \sqrt{2}-2.