Evaluate
10\sqrt{5}-5\approx 17.360679775
Expand
10 \sqrt{5} - 5 = 17.360679775
Share
Copied to clipboard
\left(\sqrt{5}\right)^{2}+4\sqrt{5}+4-\left(3-\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+2\right)^{2}.
5+4\sqrt{5}+4-\left(3-\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
9+4\sqrt{5}-\left(3-\sqrt{5}\right)^{2}
Add 5 and 4 to get 9.
9+4\sqrt{5}-\left(9-6\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{5}\right)^{2}.
9+4\sqrt{5}-\left(9-6\sqrt{5}+5\right)
The square of \sqrt{5} is 5.
9+4\sqrt{5}-\left(14-6\sqrt{5}\right)
Add 9 and 5 to get 14.
9+4\sqrt{5}-14+6\sqrt{5}
To find the opposite of 14-6\sqrt{5}, find the opposite of each term.
-5+4\sqrt{5}+6\sqrt{5}
Subtract 14 from 9 to get -5.
-5+10\sqrt{5}
Combine 4\sqrt{5} and 6\sqrt{5} to get 10\sqrt{5}.
\left(\sqrt{5}\right)^{2}+4\sqrt{5}+4-\left(3-\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+2\right)^{2}.
5+4\sqrt{5}+4-\left(3-\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
9+4\sqrt{5}-\left(3-\sqrt{5}\right)^{2}
Add 5 and 4 to get 9.
9+4\sqrt{5}-\left(9-6\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{5}\right)^{2}.
9+4\sqrt{5}-\left(9-6\sqrt{5}+5\right)
The square of \sqrt{5} is 5.
9+4\sqrt{5}-\left(14-6\sqrt{5}\right)
Add 9 and 5 to get 14.
9+4\sqrt{5}-14+6\sqrt{5}
To find the opposite of 14-6\sqrt{5}, find the opposite of each term.
-5+4\sqrt{5}+6\sqrt{5}
Subtract 14 from 9 to get -5.
-5+10\sqrt{5}
Combine 4\sqrt{5} and 6\sqrt{5} to get 10\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}